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1. ZINTRODUCTION

The purpose of this paper is to present a generalizétion of
Liapunov's Direct Method (4) and use it to prove a result. The
result is the competitive exclusion exhibited by the Lotka-Volterra
competition equations.

Competitive exclusion is fhe extinetion of some of the species
competing with each other for a limited set of resources necesgsary
to their survival. The Principle of Compétitive Exclusion refers to
a belief in theoretical ecology that only as many species can coexist
as there are limiting resources. It states that only one species can
best compete for a niche and all species that cannot find a niche for
which they compete best will eventually become extinct.

The Lotka-Volterra competition equations are a class of mathe-
matical models presented by Lotka (5) and Volterra (10) and general-
ized by MacArthur and Levins (6), May (9), and McGehee and Armstrong (8).
They depict an ecological system composed of x

1

competing for zq through z, ~Tresources. The model is described by

through xn species

the differential equations:

xl = xlgl(zl,...,zm)

e
il

xngn(zl,...,zm)

where the gj's are strictly increasing functions of the zk's
ax

means UTﬂg" . The total amount of

1 1

Throughout this paper ij

each resource is constant and is a linear function of the species



plus Zj , the quantity of the j~th resource that is available for
comsumption. Veolterra considered two species compefiting for one
resource where gl and g2 are linear functions of z . He argued
that if gy and g, are different one species always became extinct.
Armstrong and McGehee (1) showed that when n species are com-
peting for one resource all bubt one species become extinct. They
divided the positive orthant into two regions and constructed two
Liapunov functions. One Liapunov function was used to show that
points in the first region were attracted into the second region.
The other function showed that all points in the second region
eventually converged to one point on an axis of the orthant. This
proof is an "ad hoc" argument. It applies only to n species on
one resource. There is nothing fundamental in this proof that
applies to othér systens.
In this paper an alternative proof is presented that seems to
be fundamental. It uses a generalization of the Liapunov Direct
Method (4). One Liapunov-like function is produced whose properties
are used to locate the abtracting set. The Liapunov generalization

is:

Theorem 1. Let X be a smooth compact manifold whers w(x,t) is

the flow of the system x = F(x) on the manifold, ¢€ XX R,X) s
- - -1

Ve CT(LR) , M=YTH0) , M, = ¥7HO) Nm, YTHm,) >0 and

each point in WE is isolated in 7 . If R 1is the set of rest

points in M and x€ X , then w(x)C®
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2
Here, as elsewhere, V" weans nd Vo , V(M >0 means that
7 dt An
for each x€ M V(x) >0 , g'(z) means g? , and ofx) 1is
the omega limit set of x and is defined as w(x) =cl{N o(x,[t,=))]}

t>0
where ¢l 1is set closure.

Theorem 1 will be proved in the last chapter. Notice that for
a Liapunov function V , M= W% =Q , the origin, and V (X-M) <0 .
When these conditions aré satisfied Wé =f 1is trivially isolated
in 7 . V trivially satisfies V(WPWE) > 0 since this statement
cannot be shown to be false. By Theorem 1, w(x) =0 . Therefore,
Theorem 1 is a generalization of the Liapunov Direct Method.

In the next chapter the theorem is applied to show that there
is only one survivor when n species are coupeting for one resource
in the Lotka-Volterra manner. Finally, in the last chapter a lemma

is stated and proved and then used to prove the main theorem.



2. BIOLOGICAL APPLICATION

This chapter begins with a description of a Lotka-Volterra
competition model. Then the main theorem is presented and used to
show competitive exclusion.

X is the subset of the positive orthant of ZRn where z ,
available rescurce, is nonnegative. TFor each J in
the set {1,...,n} kj is a positive real number, gj(z) is a

strictly increasing function of 2z  where 0 <z <z 4

o’ 0

is a positive real number and Ej = ggl(o) is a positive real

number. w(x) is the omega limit set (2), the set that x con-

verges to, o(x) = cl{ N @(x,[t,=))} , where cl is set closure
t>0

and ¢ 1s the flow of the system.

The compebtition model is degcribed by the differential equations

and the resource constraint:

Xy = %8, (2)
*n T xngn(z)
n
7z =z - &L kK.x.
07 5

Corollary 1 (Application): If x lies on X and Ej the zeros of

g.(z) have the propsrty that 0 < El < Z, < ... ; z < 24 then

J b4
R A
UJ<X)C{O,<Xl,0,---,0),---,(0,-v-,0,xn) -Xj kj }
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The ordering of the {Ej} is a comparison of the effectiveness
of the species in competing for the resource. The gj's are growth
functions and their zeros indicate the lower bounds of resource at

which the jth species can still increase its population. kj is the

amount of resource that each member of species J requires.

Proof of Corollary 1:
Notice that the convex set X is postively invariant in the
system on R . First we will find M, Wé and R . ILet V = -z

m = 1"1(0)

n n ’
V=-2= % kX, = kx.x.g.{z .
17373 21 J JgJ( )
J=1 J=1

{x€¢x:2 =0}

]

Therefore, M

{xem:¥(z) = 0}

#

T

n n
V= k.x.g.(z) + T k.x.g.(z)z
n o n
= & kx.g. (z)+ & kx.g'(z)z
P s A o 3373
On M, z =0 . Therefore,
n
2
V’ = k.x.g5(z)
M j=1 9 379

For each J , xy >0 or g?(z) >0

So on 77% each term of V must be zero. Therefore
77&2 = {xeM: for each j , xj =0 or gj(z) =0} . It is clear
that 0 = (O,...,O)E??a{2 and for each j = 1,...,n



_.': 9 ey s -)O,"" . . = —-‘.= LR
X (o 0 x5 0)€ W% so 7, {0,x.:3=1,...,n}

Notice that each point in Wb is isolated in M and is & rest
point. Therefore, R = Wb . Also V(WFW%) >0 . Applying Theorem 1
w(x)€ WE for each x€ X

However, we can locate one point in R which attracts the whole

interior of X

Theorem 2: If x 1lies in the interior of X and the zeros of

gj(z) have the property that 0 < El < £2 < ... < En then
z ~z
o(x) = %, = (x,,0,...,0) where x, = ST
1 e ' 1 kl

Proof of Theorem 2:

We will show that only =x. has a domain of attraction that

1
intersects the interior of X . TFrom Corcllary 1 we know that if
x lies in the interior of X , w(x)€ M, - Then it follows that
w(x) = il
"If f is a C' flow on a smooth manifold X , x. is a

0
hyperbolic fixed point of £ , V is a small neighborhood of X,

and w+ is the local positively invariant asymptotic set
W+ = x€V:f(x,t)cV for t>0 and f(x,t)~*x0 as t=ow}

then W is an embedded submanifold of V with the embedding as
smooth as f". (7) This is the Stable Manifold Theorem (3) and

+
W is called the stable manifold of V . We will show that only

X has a stable manifold that intersects the interior of X

1
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We recall that x = F(x) . Then DF = (38—— (x,88(2))), 3,k=1,...,n

= F'.g (z) ~k.x.g'(z) k. x g'(z) -k x '(z;-
1 1151 At R AR R A 13

- 1 - t - 1
klngz(Z) b4 gg(z) kgngg(z) R knx2g2(z)

- 1 - 1 - 1
klxngn(Z) , kgxngn(Z) 5o a8, (2) knxngn(Z) ]
B _

If x, = (O,-..,O,xj,o,...,o) then

J
DF(Xj) = gl 3 O ] s O > ] O b3 O
O 3 g2 2 3 O ] bl O 3 O
“kox.gh, ~k.x.gl,..., ~k.x. 8%, ... ,.-k x.g', -k x.g"
155850 T8 3% n-1"385" “Fn* 385
O 3 o b ] o 3 2 gn—l > O
o 0 3 0 > > 0 3 ) 0 3 gn J

because z =2z, , %

; =0 for k # 3 and gj(ij) =0

Now we will compare the local stable manifolds about the members

of R
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Case 1: Xl

The eigenvalues of DF(il) are

Cexei () o oey(2)) 5 e(2)),- g, (3)]

All of them are negative because
' e s
(1) kl ,» X, and g, are positive and
(2) The {gj} are increasing functions of z . 8o for

j =2,...,n then z, <gz. and thus (z.) <g.(z.) =
J 1 j @ gJ(zl) gJ(zJ) 0

Hence, Xy is asymptotically stable in a sufficiently small neighbor-
hood U . Since U is open in X > U intersects the interior

of X . Thus, there ig a point x in the interior of X go that

Case 2: ij for j=2,...,n
Here we will produce the eigenvectors and eigenvalues and show
that the space spanned by the eigenvectors with negative eigenvalues

lies in the boundary of X

Notice that for k # j the eigenvalue A = g, and the eigen-
vector v , where v = (0,...0,1,0,...,0,0,0,...0)" Solving
kth jth
position position

~ o . = . - = |04
for « we have DF(x v o= Av So  -k.x JgJ J Xy J g
Thus, Q@ = —kkx /(gk 3 Jga)
When k=3 , A = -ijjgj and v = (0,...,0,1,0,...,0)

kth

position



8o, the eigenvalues of DF(ij) are

z .. z - f > o >
{gl<zj)" ,gj-l(zl)’ ijjgj(zj)sgj+l(zj))"')gn(zj)}

A1l of the eigenvalues are either positive or negative because
if h<j 0= gh(ih) < gh(Ej)

if h>j3 0

]

gh(zh) > gh(ij) , and

x.g'(z.) <o
585025

x

Ir Bj is the set of eigenvectors with negative eigenvalues
then
T
)

>

Bj = {(O,'--,O,l,o,...,o
T
o""’o’l"k- x. .ot . +k.x.2" 3VUs e vy
( J+L ,]D,]/ga'i'l JXJgJ) 0 0)

3

3

T
05+4450,1,0,...,0,-k x.g" +k.x.g'
( . JgJ/(gn 3 JgJ)> }

where the 1's are in the j-th position.

1f (Bj> is the subspace spanned by Bj , then for every
X = (xl,...,xn) in (Bj) » % =0 . Therefore, (Bj) is con-
tained in the boundary of X . Since the stable manifold is tan-
gent to the boundary and unique, and the boundary is invariant, then
the stable manifold lies in the boundary. Therefore, thefe does
not exist an x contained in the interior of X so that o(x) = ij
for J=2,...,n



Case 3 0
[ “
DF(0) = le(z) . o , 0
O b gg(zo) ] b O
o, o ., ..., gn(zo)__J
The eigenvalues of DF(0) are {gl(zo),...,gn(zo)} . They are all
itd i 7. < =g.(z,) <g. .
positive since 25 <2z, and 0 gJ(zJ) gJ(zO) Therefore, the

stable manifold of 0 4s 0 and 0 1is unstable. Hence the stable
manifold of O does not intersect the interior of X
In conclusion, El is the only member of R whose local stable
menifold intersects the interior of X . Therefore only il can be
an attractor for the interior of X . Because w(x) is contained
in R, o) = (xl,o,...,o)
n _ Z,~Z,
Since z =gz, - & ijj and z = 2 then X, =%

0 . .
J=1 J
This completes the proof of Theorem 2.
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3. FPROOF OF THEOREM

In this chapter, Theorem 1 is proved. PFirst a lemma is pre-
sented and proved in which we will show that for smooth flows on
smooth compact manifolds and for certain real smooth functions on
the manifold all orbits of the flow go %o an invariant set in the
zeros of the first time derivative of the function. Then we will
prove the main theorem and describe that invariant set in terms of
the second time derivative of the function.

We will assume the following notational conventions. V(%) >0

+
means V(x) >0 for %€M . R = (x¢R: x <0} and B =[{x€ER:x>0} .

Lemma 1: Let X be a smooth compact manifold, o(x,t) be the flow

. o1
of the system % = F(x) , o€ Cm(xx}R,x) , Ve cm(x;ﬁ) , M=V "(0)

and 7 is the maximal invariant subset of M . Assume that
o(M-",[0,»)) does not intersect V—l(]R“) . Then w(x) ¢ 7

Proof':

Notice that w(x) exists, and is invariant and connected.



Figure 1: (x) cannot lie in V~l(I{+)

We claim that w(x) HV_1(1R+) =@ . Suppose this is not so.
Then there exists v, € w(x) ﬂV—l(]R+) and t >0 . So that
c-), + .
Yo = CD(Yl,t)E V™ ® ) and v(y,) > V(yl) - We can find B(y,)

and B(yg) , neighborhoods of Iy and Yo regpectively, where

V(B(yl)) < V(B(yz)) . Since y,,y,€ o(x) we can find

Sy > 8, >8; >0 so that x = o(x,8,) € B(yl) ,

x, = cp(x,sg)e B(yg) and xy = cp(x,s3)e B(yl) . Thus V(x3) >V(x2)
So on (p(x,[sg,s3]) V is somewhere decreasing. Therefore
cp(x,[se,ssl) intersects M-7N and flows into V_l(]R"l) . This

o - +
is a contradiction to the hypothesis. Thus w(x) N ¥ l(’.IR V=46
. =1, - .
We claim that w(x) NV (R ) =@ . Suppose this is not so.
Then in a manner similiar to the previous argument we can choose

¥y Y€ w(x) ﬁv—l(IR-) and neighborhoods B(yl) and B(yz) s0 that
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V(B(yl)) > V(B(ye)) . Selecting xlE B(yl) we can follow its orbit
from B(yl) into B(y2) and back to B(yl) . Therefore, at some
point the orbit must be increasing. Thus, it must flow from Vgl(]R_)
into V-l(}R+) and back to V(R ) crossing M-7 in each direction.
Consequently, it orbit must cross from V_l(]R+) » through m-7 ,
and inté V_l(]R') - Again, this contradicts the hypothesis. There-
fore, o(x) N7 R) = g
Therefore, w(x) -

Since w(x) is invariant and 7 contains all invariant subsets

of M , then w(x)<?N . This completes the proof of Lemma 1.

Theorem 1 (The Main Theorem): Let X be a smooth compact manifold

where o(x,t) is the flow of the system % = F(x) , o€ CT(XXR,X) ,
ve TR L m=vHo) L, oy = vHO M, i) S0
and each point in 77% is isolated in 7 . If R is the set of

rest points in M and x€X , then wo(x)cR

Proof':

To establish the theorem it is sufficient to prove that R! is
the maximal invariant subset of % and that o(%-R,[0,«)) ﬁV-l(IR-) =0 .
Then, the theorem follows from the corollary.

First we will show that R 1is the maximal positively invariant
subset of 7

Let y€M-R . Then y is not a rest point. Since Wb is
isolated, there is a small t so that o(y,t)d My . If

:p(y,t)¢ M , then y is not contained in an invariant subset of m



=1l

If o(y,t)€M , then cp(y,t)e?n-wb . But 7, flows into

V-LGR+) - Thus, 7R does not contain points which lie in invariant
subsets of 7 . On the other hand, R is invariant. Therefore,
R _1s the maximal invariant subset of ¥

Now we will show that the positive flow from 7-f and £ >0

w(y,t)é V_lGR_) . Suppose not.

VAN e
\ 1=/ S\

Lo y
TR m 7w

Figure 2: 7M-R avoids V—lOR~)

- t"l +
We have seen that o(y,{0,®)) initially crosses into V ~(R’)

-1, I ,
Because M separates TV lGR ) and ¥ lGR } , and ¢ is smooth,

: 1.+ =1, -
there exist y €V l(JR ) vy, €M y3e vV (R) and
b3 > 8 > %y >0 so that vy =o(y,by) , vy = olysty) 5 vs = ey ts)
1, + -1, -
and  o(y,(t5t,)) €V @) , and oy, (t5,83)) €V 7(R")
Since 7%, is an isolated set there is a neighborhood B(yg)

that contains no members of W% other than Yo Since
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m(y,[tz,t3]). is compact and V is differentiable we may choose

B(yl) small enough so that for every =z€ B(yl) , 9{z,10,))

crosses M in B(yz) . Therefore if =z 1s not in the orbit of
¥y , it must cross M in %Y-Wh . This contradicts the assumption
that V(WL—W@) >0 . Therefore, M-7, avoids V-lﬁR—) in the

\

positive flow. This completes the proof.
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APPERDIX: RESULTS

Lemma 1: Let X be a smooth compact manifold, lw(x,t) be the flow

of the system % = F(x) , @€ C (XxR.X) , V€ C(X.R) .,
m = v~l(0) and 7N is the maximal invariant subset of 7 . Assume
that (7 -N,10,®)) does not intersect V~lGR_) . Then w(x) c?

Theorem 1: Tet X be a smooth compact manifold where o(x,t) is
the flow of the system %k = F(x) , @€ C(XXR,X) , V€ CT(X,R)
M=) , M= YHOYNM . YTH(Wm) >0, and each point
in W& is isolated in M . If R is the set of rest points in

M and x€X , then w(x)€R

Corollary 1: If X 1is the subset of the positive orthant of Rr"

where =z 1is nonnegative with the system:

%) = xlgl(z)

. ,
*n xngn(z)
n
z =z - &L k.X
07,5 33
- -1, - -
= .. <7<
where kj >0 |, g? >0 , 2y = &y (0) . 0 <z < z, < 24
Zy- %
%. = (0,...,0,%,,0,...,0) , and x . = J If x€X , then
J J 3 kj

m(x) C {O,xl, e ,xn}

Theorem 2: With the same hypothesis as Corollary 1, if x 1lies in

the interior of X , then w(x) = gl
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