Spatiotemporal Databases & Moving Object Languages

query languages for moving objects databases
Spatiotemporal Databases

Both Geo spatial and temporally referenced

Why?

- Environmental Change
- Transportation
- Demographics
- Governance/Administration
Moving Object vs Change over Time

- Moving objects
 - Vehicles
 - People
 - Animals

- Changes over Time
 - County borders
 - Forest growth
 - Ice coverage

Moving Objects Changing Over Time

- Moving Wild Fire
- Spread of Volcanic Ash
- Traffic patterns
Three Stages of Complexity

You are designing a GIS database to track a vehicle in the city.

- **Static (non-temporal!)**
 - Single snapshot Eg. Car in one place at one time

- **Snapshot**
 - Periodic snapshots. Eg. Traffic cameras

- **Object lifelines**
 - Track changes to state. Eg. Record each new street

- **Events, Actions and Processes**
 - Track events themselves. Eg. Acceleration, Turns
Times in Databases

- Smallest Unit is a **Chronon** or **Tick**
 - If you store D/M/Y, you can't query by hour
- Store as instant (point in time)?
 - Or maybe time intervals?
- Branching time
 - Model what-if scenarios or possibilities
- Cyclical time
 - Repeating stuff like seasons
- Data type
 - Real numbers? Integers?
Valid vs. Transaction Time

Which type do you need?

- **Valid Time**
 - The time the event occurred
 - Maybe multiple valid times
 - Dinosaur lived 230 million years ago
 - Dino discovered 20 years ago
 - Dino acquired by museum 1 year ago

- **Transaction Time**
 - A timestamp in the DB when inserted/modified
 - Dino discovery recorded in database
Moving Objects Databases-definitions

Data abstraction

moving point - only time-dependent position
- eg. cars, trucks, airplanes, ships, mobile phone users

moving region - also time-dependent shape and extent
- eg. forest fires, oil spills in the sea, armies, epidemic diseases, and hurricanes

Database perspectives

Location management perspective
- maintain locations; query the current and expected near future positions and relations

Spatio-temporal data perspective
- the complete histories of movements are represented
Modeling and Querying Current Movement
– the MOST Model and FTL Language

Strategies:
 a. Store a motion \textit{vector} - a position as a linear function of time
 b. Database is updated if the \textit{deviation} exceeds the threshold
 c. Assumptions on object classes and \textit{spatial attributes}
 d. Contains the object - \textit{Time}, yields the current time at every instant

Dynamic Attributes
A standard data type but changes its value automatically over time
\textit{eg.} \textit{value}(A, t) = A\textunderscore value + A\textunderscore function(t - A\textunderscore updatetime). \(t \geq A\textunderscore updatetime \)

Representing Object Positions
\textit{loc}(route, startlocation, starttime, direction, velocity, uncertainty)

Semantics of Queries, Query Types
Database \textit{state}: a mapping (associates each object class with a set of objects of appropriate types, and the \textit{Time} object)
Database \textit{history}: an infinite sequence of states
\textit{eg.} \textit{Q}(Ht, t). \(\text{instantaneous query} \)
\textit{Q}(Ht, t), \textit{Q}(Ht+1, t + 1), \textit{Q}(Ht+2, t + 2), \ldots \(\text{continuous query} \)

The Language FTL
\textit{RETRIEVE <target-list> FROM <object classes>}
\textit{WHERE <FTL-formula>} \textit{until, nexttime, always, eventually_within_c...}
Modeling and Querying History Movement
– Spatio-temporal Data Types(1)

Important Abstractions:
Geometries in spatial databases change continuously over time
- \textit{Point(position relevant)}, \textit{Line(connections)}, \textit{Region(extents relevant)},
- \textit{Partition(subdivisions)}, \textit{Network(graph structure)}

Spatio-temporal Data Types:
- \textit{moving point} and \textit{moving region} visualized (2D/3D + time)

Example Operations and Queries
- \textit{Trajectory, traversed, deftime, intersection, atinstant, val, duration}
 - \texttt{eg.SELECT count(*) FROM cars AS c, weather AS w WHERE duration(deftime(intersection(c.trip, w.area))) > 1800}

Goals in the Design of Types and Operations
- Closure of type system; Genericity; Consistency between
 - nontemporal and temporal types; Consistency between nontemporal and temporal operations

Abstract and Discrete Model
- Abstract models: mathematically simple, elegant, and uniform, but
 - not directly implementable.
- Discrete models: more complex and heterogeneous, but can be implemented.(a finite representation)
Modeling and Querying History Movement
– Spatio-temporal Data Types(2)

Operations:
1. Design operations for nontemporal types.
2. Use lifting make them all time dependent in a way consistent with the static definition.
3. Add specialized operations for the temporal types

Implementation:
- sliced representation
- temporal function
- simple function
- unit

The Structure of The Type System

```
int
real
string
bool
point
points
line
region

moving(int)
moving(real)
moving(string)
moving(bool)
moving(point)
moving(points)
moving(line)
moving(region)

range(int)
range(real)
range(string)
range(bool)

periods
```

eg.
- change position in discrete steps --> set of points
- move continuously --> a curve line value
Further Work and Applications

1. Moving Objects in Networks
 A network is modeled as a set of routes and junctions between routes
 \(gpoint, gline, moving(gpoint) \) and \(moving(gline) \)

2. Spatio-temporal Predicates and Developments
 The framework first allows one to obtain basic spatio-temporal
 predicates by aggregating a static topological relationship over all
 instants of a time interval
 \(Cross := Disjoint \rightarrow meet \rightarrow Inside \rightarrow meet \rightarrow Disjoint \)

3. Uncertain Trajectories
 \(PossiblySometimeInside \) \(SometimesPossiblyInside \)
 \(PossiblyAlwaysInside \) \(AlwaysPossiblyInside \)

Key Applications

Query languages (first kind) - current and near future movement
 gas stations, hotels, parcel delivery services, air traffic control

Query languages (second kind) - history of movement
 movements of animals, deforestation of the Amazon rain forest
Thank You!