Convex design of combination drug therapy

Neil K. Dhingra, Marcello Colombino, and Mihailo R. Jovanović

Motivation
- Combination drug therapy
 - Effectively suppresses all mutagens
 - Avoids side effects (from too many drugs)
- Other applications
 - Leader selection in directed networks
 - Design of chemical reaction networks
 - Decentralized control of buildings

Problem Formulation

Evolution model

\[
\dot{x} = \left(A + \sum_{j=1}^{r} D_{ij} u_{j} \right) x + d
\]

Linear Dynamics

- Interpretation
 - \(x_i \) – population of \(i \)th HIV mutagen
 - \(A \) – mutation probabilities and replication rates
 - \(u_{j} \) – dose of \(j \)th drug
 - \((D_{ij})_{ii} \) – effect of drug \(j \) on mutagen \(i \)
 - \(d \) - disturbances or initial virus populations
- Positive system, i.e., \(x(0) \geq 0 \implies x(t) \geq 0 \)
- Assumptions
 - \(A \) – Metzler matrix (\(A_{ij} \geq 0 \) for all \(i \neq j \))
 - \(D_{ij} \) – diagonal matrices

Theoretical Contributions

Convexity of \(H_2 \) norm wrt \(u \)
- Energy of the impulse response
 \[
 J_2(u) := \sum_{i} \int_{0}^{\infty} \|x(t)\|_2^2 \, dt, \quad d(t) = e_i \delta(t)
 \]
- Variance amplification of stochastic disturbances
 \[
 J_2(u) = \sum_{i} \lim_{t \to \infty} \text{var}(x_i(t)), \quad d(t) \sim \mathcal{N}(0, I)
 \]

Convexity of \(H_\infty \) norm wrt \(u \)
- Induced energy gain; worst-case amplification
 \[
 J_\infty(u) := \sup_{d \neq 0} \int_{0}^{\infty} \|x(t)\|_2 \, dt
 \]

Combination Drug Therapy Design

Convex Optimization Problem

\[
\text{minimize} \quad J(u) + g(u)
\]

Objective – design drug doses to balance

Performance:
- \(J(u) \) – \(H_2 \) or \(H_\infty \) norm

Magnitude/Sparse:
- \(g(u) \) – Combination of penalties and constraints

Can impose penalties on
- size of drug doses \(u^T u \)
- number of drugs \(\gamma \|u\|_1 \)
- (larger \(\gamma \) → less drugs)

Can impose constraints on
- Budget \(\sum |u_i| \leq \beta \)
- Maximum dose \(|u_i| \leq \beta_i \)
- Drug \(j \) requiring drug \(i \) \(u_j \leq u_i \)

Reference

HIV Example

- Sparsity pattern of \(A \)
- 35 HIV mutagens
- 5 broadly neutralizing antibodies

Budgeted Combination Drug Therapy
- Budget constraint \(\sum |u_i| \leq 1 \)
- Limited budget also promotes use of fewer drugs

Aggregate and Worst-Case Response

The drugged (a) aggregate response, illustrated by the total virus population and the (b) worst case response, here corresponding to the population of mutagen YU2-N280Y-N332K, vs. time. Response is to the initial condition \(x(0) = \frac{1}{\sqrt{35}} \).

\(H_2 \)- (—) and \(H_\infty \)-Optimal Doses (—) and Performance

<table>
<thead>
<tr>
<th>Antibody</th>
<th>(u_{H_2})</th>
<th>(u_{H_\infty})</th>
<th>(J_2(u_{H_2}))</th>
<th>(J_\infty(u_{H_\infty}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>3BC176</td>
<td>0.9952</td>
<td>0.9875</td>
<td>0.6017</td>
<td>1.1947</td>
</tr>
<tr>
<td>PG16</td>
<td>0</td>
<td>0</td>
<td>0.2484</td>
<td>0.1857</td>
</tr>
<tr>
<td>45-46G54W</td>
<td>0.1564</td>
<td>0.0000</td>
<td>0.1084</td>
<td>0.1084</td>
</tr>
<tr>
<td>10-1074</td>
<td>0</td>
<td>0</td>
<td>0.0125</td>
<td>0.0125</td>
</tr>
</tbody>
</table>

Acknowledgements
- Anders Rantzler, Lund University; for useful discussion
- Vanessa Jonsson, Caltech; for sharing HIV model
- NSF Grant ECCS-1407958, Swiss NSF Grant 2–773337–12